
Journal of Chromatography, 444 (1988) 89-95 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

CHROMSYMP. 1331 

SYNTHESIS AND PURIFICATION OF DEOXYRIBOSE ANALOGUES OF 
NAD + BY AFFINITY CHROMATOGRAPHY AND STRONG-ANION-EX- 
CHANGE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY 

RAFAEL ALVAREZ-GONZALEZ 

Biochemical Pharmacology Section, Biomedical Division, The Samuel Roberts Noble Foundation, Inc., P.O. 
Box 2180, Ardmore, OK 73402 (U.S.A.) 

SUMMARY 

Two different chemical analogues of NAD+, containing either 2’-deoxyribose 
(2’-dNAD+) or 3’-deoxyribose (3’-dNAD+) were synthesized enzymatically with ox- 
idized nicotinamide mononucleotide (NMN+)-adenyl transferase (E.C. 2.7.7.18). 
These compounds were efficiently purified by affinity chromatography on a boronate 
gel, followed by strong-anion-exchange high-performance liquid chromatography 
under isocratic conditions. These chromatographic steps resulted in the elimination 
of unreacted deoxyadenosine triphosphates (dATP) and NMN+, respectively. The 
purified dNAD+ isomers were examined as possible substrates of homogeneous po- 
ly(ADP-ribose) polymerase, purified from calf thymus. 3’-dNAD+ was effectively 
utilized as a substrate by the polymerase, which catalyzed the formation of protein- 
-bound poly(3’-dADP-ribose) during automodification. However, 2’-dNAD+ was 
not a substrate for the automodification reaction catalyzed by this DNA-dependent 
enzyme. Instead, 2’-dNAD+ was a potent non-competitive inhibitor of NAD+ in the 
elongation reaction. 

INTRODUCTION 

Several chromatin proteins of higher eukaryotes have been shown to be cov- 
alently modified with homopolymers of ADP-ribosel. This post-translational reac- 
tion is catalyzed by the DNA-dependent enzyme poly(ADP-ribose) polymerase (EC. 
2.4.2.30), which utilizes NAD+ as the substrate 2,3. Due to the molecular size of the 
modifying polymer, which can be as long as over 200 residues of ADP-ribose4,4has 
been suggested that the poly(ADP-ribosylation) of proteins plays a major role in 
modulating changes in chromatin structure that take place during various cellular 
functions; i.e., gene expressions, cell differentiatio+‘, DNA replication*, and DNA 
excision repairg,lo. Cellular recovery from DNA damage seems to be more directly 
related to the poly(ADP-ribosylation) of chromatin proteins because of the sensitivity 
of poly(ADP-ribose) polymerase to stimulation by DNA strand breaks’ l. 

Poly(ADP-ribose) polymerase, a single polypeptide of 116 kilodalton, catalyzes 
the initial covalent attachment of an ADP-ribose residue to a protein acceptor. as 
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well as the subsequent chain elongation l 2. In the latter reaction, the enzyme catalyzes 
the formation of a 2-l” 0-glycosidic linkage between two ADP-ribose residues13. 
Thus, the 2’-hydroxyl group of the adenine proximal ribose of one ADP-ribose res- 
idue is covalently bound to the 1”-hydroxyl group of the next residue. In order to 
characterize the elongation reaction catalyzed by this enzyme further, highly purified 
2’-deoxyribose-NAD + (2’-dNAD ’ ) and 3’-dNAD + were examined as potential sub- 
strates for homogeneous poly(ADP-ribose) polymerase from calf thymus. The results 
obtained indicate that while 3’-dNAD+ is a good substrate for the enzyme auto- 
modification reaction, 2’-dNAD+ is not. 

MATERIALS AND METHODS 

Materials 
Benzamide, oxidized nicotinamide mononucleotide (NMN+), 2’-deoxy ATP 

(2’-dATP), 3’-dATP, inorganic pyrophosphatase, and bacterial alkaline phosphatase, 
Type II-S, were obtained from Sigma (St. Louis, MO, U.S.A.); Affi-gel 601 from 
Bio-Rad (Richmond, CA, U.S.A.); NMN+-adenyltransferase from Boehringer 
Mannheim (Indianapolis, IN, U.S.A.); the Partisil lo-SAX column (250 x 4.6 mm 
I.D.) and packing material from Whatman (Clifton, NJ, U.S.A.); radiolabeled [a- 
3ZP]2’-dATP (> 3000 Ci/mmol) and [a- 32P]3’-dATP (> 5000 Ci/mmol) from New 
England Nuclear (Boston, MS, U.S.A.). All other chemicals used were of reagent 
grade. 

Synthesis and pur@cation of dNAD’ analogues 
Radiolabeled [adenyl-32P]2’-dNAD+ and 3’-dNAD+ were synthesized by in- 

cubating for 2 h at 37°C a total volume of 1.0 ml, containing 100 mM glycyl-glycine 
buffer (pH 7.4), 10 mM magnesiumchloride, 3.0 mM NMN’, 0.5 mM [a-32P]2’-ATP 
or 3’-dATP (3 Ci/mol), 3 units of inorganic pyrophosphatase, and 0.2 units of NAD+ 
pyrophosphorylase. The reaction was stopped by cooling the mixture to 0°C. It was 
immediately loaded on a 1 .O-ml column of Affi-gel60 1 to erliminate unreacted dATP, 
as described previously 14. The boronate purified-material was lyophilized and incu- 
bated with 3 units of bacterial alkaline phosphatase for 1 h at 37°C in 1.0 ml of 10 
mM Tris-HCl buffer (pH 8.0). The incubation mixture was then analyzed by high- 
performance liquid chromatography (HPLC) on the Partisil lo-SAX column, pre- 
ceded by a guard column (75 x 2.1 mm I.D.) containing the same material with 50 
mM potassium dihydrogenphosphate (pH 4.7) as the buffer system at a flow-rate of 
1.0 ml/mm. The fractions containing the radiolabeled dNAD+ analogue were col- 
lected, pooled and further concentrated on a l.O-ml column of Affi-gel 601. The 
boronate-purified material was lyophilized, redissolved in a small volume of water 
and stored at -20°C until used. Typically, about 20-30% of the initial radiolabel 
was recovered as pure 2’-dNAD’ or 3’-dNAD+ . 

Purljication and assay of poly(ADP-ribose) polymerase 
The enzyme was purified from calf thymus by the procedures of both Nie- 

dergang et al.’ s and Zahradka and Ebisuzaki 16. Similar results were obtained with 
both enzyme preparations when using either 2’-dNAD+ or 3’-dNAD+ as a substrate. 
Poly(AI )P-ribose) polymerase activity .was determined by measuring the total 
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amount of radiolabeled substrate incorporated into 20% (w/v) trichloroacetic acid 
(TCA)-isoluble material. Typically, a total volume of 0.1 ml, containing 100 mM 
Tri-HCl buffer, (pH 8.0), and 10 mM magnesium chloride, 1.0 mM dithiotreitol 
(DTT), 2.7 pmol of pure enzyme and either 10 PM of [14C]NAD+ (400 cpm/pmol) 
or 10 PM [32P]2’-dNAD+ or 3’-dNAD+ (4000 cpm/pmol), was incubated at 25°C 
for 5 min. All incubations were minimally performed in duplicate. The reaction was 
stopped by the addition of 0.9 ml of 20% (w/v) TCA and 50 ~1 of 1% bovine serum 
albumin at 0°C. The suspension was then filtered through Whatman GF/C filter 
papers, 2.4 cm in diameter, the filters were rinsed three times with 20% TCA and 
twice with diethyl ether, and the radioactivity was determined by liquid scintillation 
counting. Alternatively, aliquots of the incubation were analyzed by electrophoresis 
on a 10% polyacrylamide gel. 

Polyacrylamide gel electrophoresis 
Pure poly(ADP-ribose) polymerase from calf thymus was electrophoresed on 

a 10% lithium dodecyl sulphate polyacrylamide gel for 6 h at 300 V (constant volt- 
age), following incubation with either [adenyl-32P]2’-dNAD+ or 3’-dNAD+ for 5 
min at 25°C in the absence or presence of 1 mM benzamide. The gel was then stained 
with 0.1% Coomasie Blue, destained, dried on a filter paper, and exposed to X-ray 
film overnight, at room temperature. 

RESULTS 

Two deoxyribose analogues of NAD+, 2’-dNAD’ and 3’-dNAD ‘, were en- 
zymatically synthesized from either 2’-dATP or 3’-dATP and NMN+ with 
NMN+-adenyltransferase (NAD+ pyrophosphorylase), as specified in Materials and 
methods. As shown in Table I, the elimination of unreacted dATP was achieved by 
affinity chromatography on Al&gel 601 14, which allows quantitative binding of ri- 
bonucleotides while deoxyribonucleotides, which lack a vicinal set of hydroxyl groups 
do not bind to the column. Thus, 2’-dNAD+ and 3’-dNAD+ effectively bind to the 
boronate gel via the nicotinamide ribose moiety. The large amount of NMN+ con- 
taminating dNAD+ following boronate chromatography, was removed by strong- 
anion-exchange HPLC under isocratic conditions, following enzyme digestion of the 
boronate-purified material with bacterial alkaline phosphatase as described in Ma- 
terials and methods. This enzymatic treatment resulted in the conversion of NMN+ 

TABLE I 

BINDING OF ADENINE-CONTAINING DEOXYNUCLEOTIDES TO AFFI-GEL 601 

Adenine- Loaded on 
containing column 
nucleotide lcpml 

Bound to 
COllU?W 

(cpml 

Percentage 
of total 

bound 

2’dATP 246 000 280 0.11 
3’-dATP 223 000 187 0.08 
2’-dNAD + 249 000 219 840 88.28 
3’-dNAD + 248 000 221 430 89.29 
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TABLE II 

HPLC RETENTION TIMES OF PYRIDINE NUCLEOTIDES ON A PARTISILlO SAX COLUMN 

Nucleotide Retention time (min) 

Nicotinamide-ribose 3.45 
NMN+ 6.85 
NAD+ 7.60 
2’-dNAD + 9.22 
3’dNAD + 9.75 
NADH 18.25 

to nicotinamide ribose, which was not retained by the Partisil lo-SAX column and 
thus eluted ahead of the phosphatase insensitive 32P-radiolabeled dNAD+, as indi- 
cated in Table II. Thus, the fractions containing the radiolabeled dNAD+ analogue 
were collected, desalted, and stored as indicated above. 

Pure 2’-dNAD+ and 3’-dNAD+ were separately incubated with homogeneous 
poly(ADP-ribose) polymerase from calf thymus, in a concentration of 10 pM for 5 
min at 25°C in the absence-or presence of 1.0 mM benzamide, a potent competitive 
inhibitor of poly(ADP-ribose) biosynthesis. Table III shows that while 3’-dNAD+ 
was effectively used as a substrate by the polymerase in the automodification reaction, 
2’-dNAD+ was not incorporated into acid-insoluble material, indicating that it is not 
a substrate for the pure enzyme. It is important to note that, the total specific activity 
of the enzyme with 3’-dNAD+ as a substrate is about 20 times lower than the specific 
activity obtained with the natural substrate, NAD+, under identical conditions. This 
may be due to differences in the rates of elongation. Nevertheless, the inhibition of 
the incorporation of [adenylate- 32P]3’-dNAD+ into acid-insoluble material by ben- 
zamide, demonstrates the enzymatic nature of the reaction. In order to substantiate 
that 3’-dNAD+ is a substrate for the automodification of poly(ADP-ribose) poly- 
merase and that 2’-dNAD+ is not, aliquots of the enzyme incubation reactions were 

TABLE III 

UTILIZATION OF NAD+, 2’-dNAD+ AND 3’-dNAD+ AS SUBSTRATES OF HIGHLY PURIFIED 
POLY(ADP-RIBOSE) POLYMERASE FROM CALF THYMUS AT A CONCENTRATION OF 10 
pM AT 25°C IN THE PRESENCE AND ABSENCE OF 1 mM BENZAMIDE 

Substrate Benzamide Enzyme activity 
(I mM) (pm01 inclminlpg protein) 

NAD+ + 0.2 f 0.1 (n = 5) 
NAD + _ 65.2 f 1.8 (n = 5) 
3’-dNAD+ + 0.12 f 0.01 (n = 5) 
3’-dNAD + _ 3.52 f 0.4 (n = 5) 
2’-dNAD + + N.D.* 
2’-dNAD + _ N.D.* 

* No incorporation of high-specific-radioactivity [adenyl-3zP]2’-deoxy NAD+ into 20% trichlo- 
roacetic acid-insoluble material. 
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Fig. 1. Polyacrylamide gel electrophorcsis of poly(ADP-ribose) polymerase following incubation with 
[32P]radiolabeled 2’-dNAD+ and 3’-dNAD* in the absence and presdence of benzamide. The molecular 
weight markers used were: myosin (212 kilodalton); /?-galactosidase (116 kilodalton); phosphorylase b (92 
kilodalton); bovine serum albumin (67 kilodalton) and ovalbumin (45 kilodalton). 

electrophoresed on a 10% polyacrylamide gel. Fig. 1 shows that a 32P-labeled band 
migrates at the position of the lldkilodalton marker, following incubation of the 
polymerase with 32P-labeled 3’-dNAD+ which correlates with the migration of au- 
tomodified enzyme as previously shown by others”*l 8. Again, the presence of benz- 
amide in the incubation mixture totally prevented the labelling of the enzyme (Fig. 
1). Incubation of the enzyme with [3zP]2’-dNAD+ under identical conditions did not 
result in the appearance of a labeled protein migrating with the enzyme. This result, 
further demonstrates that 2’-dNAD+ is not a substrate for poly(ADP-ribose) poly- 
merase. 

In contrast to the results described above, 2’-dNAD+ was found to be a potent 
non-competitive inhibitor of NAD+ in the automodification reaction catalyzed by 
poly(ADP-ribose) polymerase. Fig. 2 shows the Dixon plot from which an apparent 
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Fig. 2. Determination of the apparent inhibition constant for 2’-dNAD+ in the automodification reaction 
of poly(ADP-ribose) polymerase by the Dixon plot. 

inhibition constant (Ki) of 32 @4 was calculated for 2’-dNAD+ as an inhibitor of 
poly(ADP-ribose) elongation. 

DISCUSSION 

A chemical analogue of NAD+, containing 2’-deoxyribose proximal to the 
adenine ring, has previously been synthesized by Suhadolnik et aZ.19. However, a 
simple and reproducible purification procedure for this and other dNAD+ analogues 
has not been reported. The complete purification of 2’-dNAD+ and other NAD+- 
related compounds is essential for their characterization as substrates of NAD+ uti- 
lizing enzymes. One NAD+ utilizing enzyme activity is poly(ADP-ribose) polymer- 
ase, which forms the 2’- 1”-0-glycosidic linkage between ADP-ribose units during the 
(ADP-ribose), covalent modification of chromatin proteins. Potent inhibitors of this 
enzyme activity include several nicotinamide-containing compounds such as nicotin- 
amide itself, nicotinamide ribose and NMN+ (refs. l-3). Therefore, it is necessary 
to quantitatively remove these compounds from dNAD+ preparations obtained via 
NAD+ pyrophosphorylase, where a large amount of unreacted NMN+ may be pres- 
ent. In this study, the successful purification of both 2’-dNAD+ and 3’-dNAD+ by 
affinity chromatography on a boronate resin followed by strong-anion-exchange 
HPLC under isocratic conditions, with a low-salt buffer system, is reported. More- 
over, the separation of either one of the two dNAD+isomers from NAD+ by strong- 
anion-exchange HPLC, eliminates small amounts of contaminating NAD+ thay 
might be endogenously bound to the enzyme NAD+ pyrophosphorylase. Here, it is 
concluded that purified 2’-dNAD+ is not substrate for homogeneous poly(ADP-ri- 
bose) polymerase, based on the lack of incorporation of radiolabeled 2’-dNAD+ into 
acid-insoluble material (Table III), and the absence of the characteristic labeled band 
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of the automodified enzyme following polyacrylamide gel electrophoresis (Fig. 1). 
This result is not totally unexpected because the 2’-hydroxyl group of the non-re- 
ducing end of the polymer functions as the acceptor for the ADP-ribose residue 
produced during poly(ADP-ribose) elongation . I2 Furthermore, the non-competitive 
inhibition of poly(ADP-ribose) biosynthesis by 2’-dNAD+, indicates that this 
dNAD+ analogue binds to an enzyme site that does not correspond to the NAD+ 
binding site. It is tempting to speculate that 2’-dNAD+ is a competitive inhibitor of 
the second substrate of the elongation reaction, i.e., the non-reducing end of the 
growing polymer. Further experiments are in progress to answer this specific ques- 
tion. Finally, the utilization of 3’-dNAD+ as a substrate by poly(ADP-ribose) po- 
lymerase should prove useful in determining the kinetic and chemical enzyme mech- 
anisms by which the (ADP-ribose), covalent modification of specific chromatin pro- 
teins takes place. 
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